

Godišnje izvješće 3 Rezultati

Izradio:

Tomislav Brenko, mag. geol.

Zagreb, 28.2.2020.

Strategija laboratorijskih istraživanja napravljena je prema ciljevima zadanim za treću projektnu godinu projekta "Proizvodnja željeza uz rijeku Dravu u antici i srednjem vijeku: stvaranje i transfer znanja, tehnologija i roba".

Cilj 1: Definiranje povezanosti zgure s geokemijom sirovine za proizvodnju željeza (močvarna željezna ruda i/ili pržena ruda)

Osnovni cilj laboratorijskih istraživanja u trećoj projektnoj godini bio je definirati geokemijske i mineraloške karakteristike različitih tipova močvarne željezne rude koji su se potencijalno koristili kao sirovina za prženje i taljenje željezne rude na području Podravine, te napraviti korelaciju između sirovine za proizvodnju željeza (u našem slučaju, močvarne željezne rude) i arheoloških uzoraka zgure. U tu svrhu prethodno usitnjeni uzorci različitih tipova močvarne željezne rude (tla, nodule, fragmenti) poslani su u MSA Labs u Lagley, Kanada. Uzorcima je određen geokemijski sastav korištenjem više različitih analitičkih metoda. Pritom je određen udio glavnih oksida korištenjem masene spektrometrije s induktivno spregnutom plazmom (ICP-MS). Mineralni sastav prirodne močvarne željezne rude razlikuje se od obrađivane (pržene) željezne rude na temelju pojedinih željezovitih minerala, u ovom slučaju goethita i lepidokrokita, koji se pri višim temperaturama tokom prženja i taljenja rude transformiraju u niz drugih željezovitih minerala, poput hematita, magnetita, wüstita i ponekad fayalita. Upravo iz toga razloga, korištena je metoda rendgenske difrakcije na prahu (XRD) kako bi se jasnije razlučili uzorci prirodne močvarne željezne rude od uzoraka pržene i taljene željezne rude, odnosno od zgure. Uzorci koji su pokazali mineralni sastav koji odgovara sastavu prženoj željeznoj rudi (prisutstvo hematita, magnetima i maghemita) poslani su na geokemijsku karakterizacija u MSA Labs u Langley, Kanadu. Pritom su isto kao i za močvarnu željeznu rudu određeni udjeli glavnih oksida, glavnih i sporednih elemenata, elemenata u tragovima i elemenata rijekih zemalja korištenjem nekoliko različitih analitičkih metoda.

Na isti način tretirani su i uzorci arheoloških zgura sa lokaliteta Hlebine – Velike Hlebine, koji su korišteni za korelaciju. Uzorci zgure usitnjeni su na frakciju praha te je prvotno određen njihov mineralni sastav korištenjem rendgenske difracije na prahu (XRD). Prethodno usitnjeni uzorci željezne zgure snimljeni su pomoću Phillipsovog vertikalnog goniometra (vrste X'Pert) opremljenog sa bakrenom cijevi i grafitnim monokromatorom. Prilikom mjerenja korišten je napon od 40 kV i struja jakosti 35 mA s veličinom koraka 0,02° 20. Metodom rendgenske difrakcije na prahu analizirano je ukupno 26 uzoraka koji predstavljaju različite tipove željezne

zgure sa lokaliteta Hlebine – Velike Hlebine. Potom su tako usitnjeni uzorci poslani u MSA Labs u Kanadu kako bi im se na isti način kao i uzorcima močvarne rude i zgure odredio geokemijski sastav. Posebna pozornost obraćena je na geokemijski otisak elemenata rijetkih zemalja. Da bi se uzorci potencijalne željezne rude korelirali sa arheološkim uzorcima pržene i taljene željezne rude, te željeznim predmetima, na istima je određen udio elemenata rijetkih zemalja (REE). Elementi rijetkih zemalja predstavljaju uglavnom imobilne elemente, čije koncentracije se ne bi smjele značajno mijenjati pri povećanim temperaturama (kao što je slučaj prilikom prženja i taljenja željezne rude). Upravo stoga su udjeli REE određeni na uzorcima prirodne i pržene željezne rude na području Podravine. Uz to, u laboratorijskim uvjetima provedeno je prženje nekoliko uzoraka koji su predstavljali po jedan od tri tipa močvarne željezne rude (1 uzorak tla, 1 uzorak nodula i 2 uzorka fragmenata). Tim uzorcima određen je mineraloški i geokemijski sastav na isti način kao i prženoj rudi, te su pračene promjene pri zagrijavanju.

Kako bi se napravila još i dodatna korelacija između močvarne željezne rude, pržene željezne rude i željezne zgure, nekoliko uzoraka svakog tipa (močvarne, pržene i taljene rude) analizirani su korištenjem skenirajuće elektronske mikroskopije s pripadajućom energetsko-disperzivnom spektroskopijom (SEM-EDS). Time se odredila mikromorfologija uzoraka, mineralne faze u njima, te promjene u geokemijskom sastavu i na vrlo malom mjerilu.

Rezultati cilja 1

U **Tablici 1.** prikazan je mineralni sastav pojedinih tipova močvarne željezne rude. Može se primjetiti da svi uzorci sadrže kvarc i goethit, željezoviti mineral koji je tipičan za močvarnu željeznu rudu. Uz to, pojedini tipovi močvarne rude sadrže specifične minerale, pa tako močvarno željezno tlo i nodule sadrže i minerale glina, te minerale iz skupine feldspata/plagioklasa. U uzorcima fragmenata močvarne željezne rude pojavljuju se i manganski oksidi/oksihidroksidi, piroluzit i hollandit. Unutar fragmenata mogu se prepoznati i pojave veće količine amorfne tvari.

Tablica 1. Mineralni sastav različitih faza močvarne željezne rude. Kratice minerala: Qtz - kvarc; Gt - goethit, Lpc - lepidokrokit; Pl - plagioklas, Or - ortoklas; Hol - hollandite; Pyr - piroluzit, Cal - kalcit; MG - minerali glina; AM - amorfna tvar.

Uzorak	Lokalitet	Tip močvarne rude	Qtz	Gt	Lpc	Pl	Or	Hol	Pyr	Cal	MG	AM
K-HG 1		Tlo	+++	+		+	+				+	
K-HG 2	Kalinovac - Hrastova greda	Tlo	+++	+		+					+	
K-HG 3		Nodule	++	++		+		?			?	
D-BG	Draganci - Bokčev grob	Nodule	+++	+	?	+	+	+			+	
P-C	Peteranec - Ciglene	Nodule	+++	+		+		+			++	
M-T	Molve - Topolovo	Tlo	+++	+		+	+				++	
NP MB 16		Fragmenti	+	++		+		?	+	+++		++
NP MB 17	Novigrad Podravski - Milakov Berek	Fragmenti	++	++		+			+		+	+
NP MB 18		Fragmenti	+	+++					?			++
KI-LP 5	Koprivnički Ivanec	Fragmenti	++	++		+					+	+
SJ 107 N 113		Fragmenti	++	++		+						?
SJ 111 N 122	Virje – Volarski Breg	Fragmenti	++	++		+						?
SJ 111 N 130		Fragmenti	++	++								?
SJ 314 N 295 51	Virje - Sušine	Fragmenti	+	+++		+						
KR - R	Koprivnička Reka - Rudina	Fragmenti	++	++								

+ - relativni sadržaj minerala unutar močvarne željezne rude korištenjem XRD-a (nikakva kvantitivna vrijednost nije pridružena +); +++ glavna komponenta, ++ sporedna komponenta; + komponenta u tragovima

Sadržaj oksida u različitim tipovima močvarne željezne rude izrazito varira. Močvarna željezna ruda uglavnom se sastoji od SiO₂ i Fe₂O₃ kao prevladavajućih oksida (**Tablica 2.**). Udio željeza varira između 13,20 i 70,89 mas. %, gdje je najveći udio u uzorcima fragmenata močvarne rude, dok s druge strane, SiO₂ varira između 3,59 i 63,38 mas. %, a najzastupljeniji je u tlima sa

područja Kalinovca – Hrastove Grede i Molve – Topolova. Osim SiO₂ i Fe₂O₃, Al₂O₃ (χ = 6,35 mas. %, max. = 12,35 mas. %), CaO (χ = 1,20 mas. %, max. = 5,67 mas. %) and MnO (χ = 4,17 mas. %, max. = 21,04 mas. %) su relativno značajno zastupljeni u uzorcima močvarne željezne rude, dok su TiO₂, MgO, K₂O, Na₂O, P₂O₅ i SrO zastupljeni samo u tragovima. Gubitak mase žarenjem je relativno visok i kreće se između 9,03 i 21,39 mas. % (χ = 13,27 mas. %), dok su ukupni organski (TOC) i anorganski ugljik (TIC) niski, sa vrijednostima 0,41 i 1,62 (χ = 0,68 mas. %) za TOC, te 0,02 i 0.81 (χ = 0,08 mas. %) za TIC. Različiti tipovi močvarne željezne rude generalno pokazuju gotovo slične udjele željeza, te se na temelju toga vrlo jasno vidi grupiranje uzoraka tla, nodula i fragmenata. Močvarna željezna tla s vrijednostima između 13,20 i 27,93 (χ = 18,52) mas. % pokazuju najniže vrijednosti. Njih slijede močvarne željezne nodule s udjelom željeza između 22,99 i 39,54 (χ = 32,85) mas. %, a fragmenti pokazuju najviše vrijednosti, s udjelom između 32,03 i 70,89 (χ = 48,34) mas. %. To se vrlo lijepo vidi na **Slici 1.**, gdje je prikazana linerna ovisnost udjela SiO₂ i Fe₂O₃ komponenti, i grupiranje uzoraka tla, nodula i fragmenata.

Slika 1. Odnos udjela SiO2 i Fe2O3 oksida unutar različitih tipova močvarne željezne rude

Također, u **Tablici 3.** prikazan je udio glavnih, sporednih i elemenata u tragovima za sve uzorke močvarne željezne rude.

Tablica 2. Udjeli glavnih oksida u uzorcima močvarne željezne rude sa područja Podravine.

Uzorak	Lokalitet	Tip močvarne rude	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	MnO	CaO	K ₂ O	Na ₂ O	P ₂ O ₅	BaO	SrO	LOI	TIC	тос	Ukupno
K-HG 1		Nodule	38,46	0,32	5,67	36,02	0,47	2,89	0,72	0,72	0,69	0,54	0,30	0,01	11,49	0,03	0,61	98,30
K-HG 2	Kalinovac - Hrastova greda	Tlo	63,38	0,44	7,34	14,43	0,67	0,10	0,83	0,92	0,97	0,38	0,03	<0,01	9,03	0,04	0,64	98,52
K-HG 3		Tlo	50,75	0,38	6,82	27,93	0,68	0,31	0,83	0,85	0,90	0,31	0,04	<0,01	9,27	0,04	0,66	99,07
NP MB 16	NT 1	Fragmenti	8,69	0,06	2,50	32,03	0,70	21,04	5,67	0,42	0,44	0,62	0,76	0,15	21,39	0,81	0,51	94,47
NP MB 17	Podravski -	Fragmenti	10,98	0,07	3,25	45,35	0,48	14,85	1,18	0,45	0,36	0,70	0,74	0,09	15,95	0,03	0,43	94,45
NP MB 18	WIIIakov Berek	Fragmenti	3,59	0,01	0,57	68,41	0,16	5,68	0,62	0,12	0,08	1,00	0,12	0,02	15,14	0,03	0,41	95,52
SJ 107 N 113		Fragmenti	24,16	0,30	8,72	37,28	0,59	5,25	0,97	0,86	0,34	0,24	0,15	<0,01	15,45	0,04	0,46	94,31
SJ 111 N 122	Virje – Volarski Breg	Fragmenti	30,67	0,37	8,58	38,94	0,59	1,59	0,72	0,90	0,46	0,66	0,07	<0,01	13,29	0,04	0,43	96,84
SJ 111 N 130	-	Fragmenti	25,92	0,29	7,52	46,86	0,48	1,69	0,60	0,80	0,34	0,45	0,06	<0,01	13,43	0,03	0,42	98,44
SJ 314 N 295 51	Virje - Sušine	Fragmenti	10,12	0,03	1,90	70,89	0,14	0,98	0,34	0,30	0,13	0,49	0,09	<0,01	11,91	0,04	0,6	97,32
D-BG	Draganci - Bokčev grob	Nodule	27,06	0,39	7,29	39,54	0,76	4,32	1,04	0,94	0,74	1,86	0,24	0,01	15,31	0,03	1,62	99,50
P-C	Peteranec - Ciglene	Nodule	44,10	0,76	12,24	22,99	0,95	0,57	0,78	1,76	0,96	1,87	0,08	0,01	11,29	0,05	1,02	98,36
M-T	Molve - Topolovo	Tlo	57,92	0,68	12,35	13,20	1,18	0,10	1,14	1,33	1,04	0,28	0,04	0,01	9,52	0,05	1,24	98,79
KI-LP 5	Koprivnički Ivanec	Fragmenti	16,67	0,12	4,53	49,45	0,65	3,13	1,27	0,79	0,42	1,90	0,19	0,01	16,02	0,02	0,48	95,15
KR - R	Koprivnička Reka - Rudina	Fragmenti	29,09	0,45	5,99	45,82	0,83	0,04	1,28	1,07	0,27	0,28	0,02	<0,01	10,57	*	*	95,71

Tablica 3. Udio glavnih, sporednih i elemenata u tragovima za uzorke močvarne željezne rude.

Ter.	oznaka	K-HG 1	K-HG 2	K-HG 3	NP MB 16	NP MB 17	NP MB 18	SJ 107 N 113	SJ 111 N 122	SJ 111 N 130	SJ 314 N 295 51	D-BG	P-C	M-T	KI-LP 5	KR - R
Ag	ppm	0,06	0,07	0,06	0,04	0,04	0,02	0,08	0,07	0,07	0,07	0,11	0,1	0,12	0,06	1,08
Al	%	3,92	3,55	2,96	1,38	1,85	0,38	4,67	4,51	4,01	1,26	3,84	6,24	6,46	2,5	3,21
As	ppm	89,1	711	621,4	230,8	362,4	488,6	266,9	143,9	335,7	584,2	482	109,6	60,8	1690,5	4733,1
Ba	ppm	277	329	2667	6457	6289	1065	1353	652	538	800	2090	682	359	1683	211
Be	ppm	1,24	1,45	2,22	0,48	0,98	0,65	2,02	1,81	1,73	0,8	2,76	5,19	2,25	1,18	2,02
Bi	ppm	0,2	0,2	0,2	0,1	0,16	0,09	0,35	0,3	0,28	0,1	0,23	0,35	0,42	0,15	0,1
Ca	%	0,64	0,61	0,52	3,96	0,83	0,44	0,71	0,53	0,43	0,25	0,75	0,58	0,85	0,92	0,95
Cd	ppm	0,09	0,23	0,82	0,33	1,52	0,67	0,79	0,64	0,45	0,61	1,74	0,89	0,2	0,18	0,68
Ce	ppm	36,68	42,07	63,42	13,92	36,4	15,61	82,35	74,81	61,33	23,03	61,79	130,81	60,28	26,68	39,11
Co	ppm	10,3	17,6	43,3	80,5	98,9	66,3	55,2	38,2	39,2	21,3	63	51,3	14,8	7,2	60,5
Cr	ppm	107	140	239	35	38	15	88	84	124	48	177	263	236	38	1310
Cs	ppm	2,56	2,39	2,06	1,39	1,76	0,33	4,63	4,23	3,66	1,39	2,99	5,25	5,2	2,67	1,95
Cu	ppm	8,8	17,3	21,9	12,9	26,6	18,3	31	30,2	26,5	17,1	27	45,2	30,5	12,8	16,2
Fe	%	10,37	19,59	25,54	23,06	31,4	48,04	28,47	28,43	32,15	49,59	27,24	16,26	9,22	35,95	33,35
Ga	ppm	8,02	7,78	7,7	3,32	5,23	1,54	11,63	11,14	9,26	3,19	9,8	17,19	13,76	6,26	9,14
Ge	ppm	<0,05	<0,05	<0,05	0,06	0,06	0,1	0,06	0,05	0,08	0,46	0,11	0,14	0,05	0,18	0,08
Hf	ppm	0,4	0,4	0,4	0,2	0,4	0,2	0,7	0,6	0,5	0,3	0,4	0,8	0,7	0,3	0,3
In	ppm	0,031	0,03	0,026	0,015	0,021	0,006	0,046	0,044	0,04	0,017	0,039	0,062	0,061	0,025	0,031
K	%	0,78	0,71	0,6	0,36	0,38	0,11	0,73	0,77	0,67	0,27	0,79	1,43	1,09	0,66	0,88
La	ppm	18,5	20,4	28,3	7,3	19,9	8,8	46,8	38	35,1	10,6	31	52,1	30,6	13,9	24,6
Li	ppm	23	16,2	13,7	9,9	14,9	1,9	23,5	22,1	16,1	3,2	20,5	33,7	39,3	14,8	8,2
Mg	%	0,43	0,42	0,29	0,4	0,31	0,16	0,38	0,37	0,31	0,16	0,44	0,58	0,72	0,45	0,53
Mn	ppm	767	2439	22594	>100000	>100000	52027	42500	12245	13464	9180	33279	4307	748	27067	235
Mo	ppm	2,54	15,9	20,96	10,97	21,63	27,29	6,31	4,6	9,72	20,56	6,68	4,09	3,7	19,09	13,31
Na	%	0,7	0,6	<0,2	<0,2	<0,2	<0,2	0,4	0,4	0,4	0,2	<0,2	0,7	0,8	<0,2	0,3
Nb	ppm	4,5	5	4,8	1,7	2,8	0,9	5,9	5,8	5	1,8	6	9,7	8,4	3,2	6,6
Ni	ppm	270,4	163,4	627,5	62,2	148,5	81,8	241	103,5	358,3	50,4	527,6	706,5	665	27,6	969,6
Р	ppm	1973	1525	2547	2882	3302	4764	1237	3304	2205	2346	9069	9115	1374	9336	1392
Pb	ppm	13	14,4	18,9	10	9,7	11,2	27,1	19	17,1	13,2	25,2	70,9	24,3	16,1	31,4
Rb	ppm	43	41,6	32,4	23,3	25,5	5,3	59,7	59	50,8	24,8	49,6	105,8	63,1	38,6	39,3
Re	ppm	0,004	0,003	0,004	0,002	0,003	0,003	0,003	0,004	0,003	0,004	0,004	0,003	0,003	0,003	0,002
S	%	0,01	0,01	0,02	0,06	0,05	0,02	0,03	0,01	0,02	0,02	0,04	0,02	0,02	0,01	0,06
Sb	ppm	0,6	1	2,1	1,2	2,3	2,2	2,1	1,9	2	1,3	2,5	2,1	1,2	0,5	14,7
Sc	ppm	7,6	7,1	6	3	4,6	1,9	9,6	9,3	8,2	3,7	7,8	13,7	13,2	6	8,2
Se	ppm	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	1	<1	<1	2
Sn	ppm	1,2	1,4	1,2	0,7	0,8	0,2	1,8	1,7	1,5	0,6	1,6	2,5	2,2	1,1	1,6
Sr	ppm	71,8	64,8	85,3	1209,4	769,7	183,4	52,3	49,5	41,4	31,1	110,4	95,9	84,5	112,3	48,4
Та	ppm	0,4	0,39	0,36	0,13	0,21	0,06	0,49	0,48	0,44	0,19	0,49	0,77	0,72	0,27	0,58
Те	ppm	<0,05	<0,05	0,13	<0,05	0,07	0,12	0,13	0,09	<0,05	<0,05	<0,05	0,1	<0,05	<0,05	<0,05
Th	ppm	5,6	5,3	4,5	2,4	3,4	1,1	8,4	8	7,1	2,7	6,3	12,6	10,9	3,9	5,6
Ti	%	0,17	0,16	0,14	0,05	0,08	0,02	0,18	0,19	0,16	0,05	0,18	0,3	0,29	0,1	0,22
Tl	ppm	0,31	0,3	0,33	0,25	0,43	0,15	0,56	0,44	0,43	0,41	0,56	0,59	0,56	0,25	0,35
U	ppm	0,9	0,9	1,5	2,7	3,6	2,2	2,7	1,6	1,8	2	3,3	3,9	1,9	0,7	1,9
V	ppm	45	61	80	30	49	36	77	75	70	49	80	185	100	45	154
W	ppm	1,3	1,8	2	0,4	0,9	0,8	1,3	1,3	1,2	1	1,5	2,2	2,1	8,4	1,8
Y	ppm	13,5	16,4	20	6,2	16,2	10	25,8	23,1	21,8	11,6	19,2	32,8	23,1	17,2	33,9
Zn	ppm	36	44	41	24	35	35	49	65	44	36	125	125	71	31	62
Zr	ppm	12,6	16,3	15,8	8,5	15,6	7,9	23,2	20,2	17,5	14,2	14,2	30,4	24,8	9,6	10,5

U **Tablici 4.** nalazi se mineralni sastav četiri uzorka koja su pržena na temperaturi od približno 800 °C u laboratorijskim uvjetima. Vidljivo je da je sav goethit transformiran u hematit, željezoviti oksid, koji tipično i nastaje dehidroksilacijom i zagrijavanjem goethita.

Uzorak	Tip močvarne željezne rude	Hem	Gt	Qtz	Cal	Prt	Rtl	Ms	Pl
K-HG 2R	tlo	+++	-	+++	-	-	+	+	+
P-C R	nodule	++	-	+++	-	-	+	+	+
NP-MB 16 R	fragmenti	+++	-	+	+	??	-	-	-
NP-MB 18 R	fragmenti	+++	-	+	-	-	-	-	-

Tablica 4. Mineralni sastav eksperimentalno prženih uzoraka močvarne rude.

+ - relativni sadržaj minerala unutar močvarne željezne rude korištenjem XRD-a (nikakva kvantitivna vrijednost nije pridružena +); +++ glavna komponenta, ++ sporedna komponenta; + komponenta u tragovima

Uzorcima prirodne močvarne željezne rude određen je sadržaj elemenata rijetkih zemalja. Kao što je već ranije spomenuto, to je određeno u svrhu praćenja geokemijskog otiska između močvarne i pržene željezne rude. Tako je u **Tablici 5.** prikazan udio elemenata rijetkih zemalja za uzorke močvarne željezne rude. Vidljivo je da uzorci tla i nodula močvarne rude imaju blago povišen sadržaj REE, dok fragmenti imaju veoma varijabilan sadržaj. Posebno se ističe uzorak NP-MB 16 koji jedini pokazuje pozitivnu europijevu (Eu) anomaliju. Takva anomalija vjerojatno se pojavljuje uslijed pojave kalcita, koji je također mineraloški definiran u tom uzorku. Naime, Eu²⁺ može se često zamijeniti sa Ca²⁺ u mineralima. S obzirom da je kalcit primarno građen od Ca²⁺, moguće je da se i povišeni Eu²⁺ tu ugradio. Udio elemenata rijetkih zemalja grafički je prikazan na dijagramu rijetkih zemalja za sva tri tipa močvarne željezne rude; za močvarna željezna tla na **Slici 2.**, za močvarne željezne nodule na **Slici 3.**, i za močvarne željezne fragmente na **Slici 4**. Također, na svakom dijagramu prikazan je i uzorak/uzorci laboratorijski pržene rude, kako bi se uočilo odstupanje u elementima rijetkih zemalja i time olakšala daljnja korelacija između močvarne i pržene željezne rude.

Tablica 5. Udio elemenata rijetkih zemalja u uzorcima močvarne željezne rude sa područja Podravine.

Uzorak	Lokalitet	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	∑LREE	∑HREE	∑REE	L/H REE
K-HG 1	Kalinovac -	29,4	63,4	6,27	24,7	5,22	1,3	4,61	0,7	4,09	0,81	2,31	0,33	2,17	0,33	130,29	15,35	145,64	8,49
K-HG 2	Hrastova	17,9	35,1	3,99	15,7	3,15	0,75	3,04	0,49	3,16	0,67	1,9	0,3	1,86	0,3	76,59	11,72	88,31	6,53
K-HG 3	greda	23,7	47,7	5,3	20,6	4,15	0,9	3,92	0,62	3,73	0,76	2,3	0,35	2,23	0,35	102,35	14,26	116,61	7,18
NP-MB 16	Novigrad	8,7	15,7	1,9	7,6	2,78	0,9	1,41	0,21	1,18	0,24	0,68	0,1	0,62	0,1	37,58	4,54	42,12	8,28
NP-MB 17	Podravski - Milakov	20,5	36,9	4,18	17	4,5	1,23	3,14	0,48	2,68	0,53	1,49	0,22	1,36	0,2	84,31	10,1	94,41	8,35
NP-MB 18	Berek	9,2	15,8	1,89	8	1,82	0,45	1,63	0,24	1,47	0,29	0,79	0,12	0,7	0,11	37,16	5,35	42,51	6,95
SJ 107 N 113		48,5	83,5	9,08	34,7	6,55	1,5	6,15	0,88	4,99	0,95	2,81	0,39	2,33	0,37	183,83	18,87	202,7	9,74
SJ 111 N 122	Virje – Volarski Breg	38,4	73,8	7,67	30,3	5,75	1,24	5,5	0,82	4,59	0,9	2,59	0,38	2,28	0,35	157,16	17,41	174,57	9,03
SJ 111 N 130		38,3	65,2	7,44	29,1	5,43	1,22	5,16	0,76	4,23	0,8	2,34	0,33	2,08	0,34	146,69	16,04	162,73	9,15
SJ 314 N 295/51	Virje - Sušine	10,7	22,7	2,37	9,7	2,11	0,5	1,99	0,3	1,88	0,4	1,2	0,17	1,16	0,2	48,08	7,3	55,38	6,59
D-BG	Draganci - Bokčev grob	32,5	63,5	6,94	26,9	5,61	1,26	4,87	0,7	3,95	0,75	2,16	0,33	1,89	0,29	136,71	14,94	151,65	9,15
P-C	Peteranec - Ciglene	56,9	133,3	13,45	52,5	10,43	2,34	9,73	1,48	8,37	1,59	4,52	0,66	3,9	0,6	268,92	30,85	299,77	8,72
M-T	Molve - Topolovo	32,4	62,5	7,33	28,9	5,85	1,32	5,45	0,87	5,12	1,02	3,04	0,46	2,86	0,47	138,3	19,29	157,59	7,17
KI-LP 5	Koprivnicki Ivanec	14,7	27,6	3,27	13,1	3,01	0,75	2,78	0,43	2,52	0,54	1,6	0,25	1,57	0,23	62,43	9,92	72,35	6,29

Na **Slici 2.** jasno je vidljivo da sva tri uzorka močvarno željeznog tla imaju gotovo iste vrijednosti elemenata rijetkih zemalja. Manje razlike postoje kod pojedinih elemenata, ali generalni trend krivulja je gotovo identičan što upućuje da uzorci imaju vrlo slično izvorište. Također, vidi se da uzorak eksperimentalno prženog uzorka tla, K-HG 2R pokazuje gotovo identičan trend kao i originalan uzorak. To dokazuje da je ovakvo praćenje elemenata rijetkih zemalja pogodna metoda za korelaciju između prirodne i pržene željezne rude.

Slika 2. Dijagram rijetkih zemalja za uzorke močvarno željeznog tla s dodatnim prženim uzorkom tla

Sličan zaključan što se tiče uzoraka rijetkih zemalja je vidljivo i kod uzoraka nodula močvarne rude (**Slika 3.**). Generalni trend uzoraka je gotovo identičan. Vidljiva je značajna razlika u udjelu rijetkih zemalja između uzoraka D-BG i K-HG 1, koji pokazuju vrlo slične vrijednosti, i uzorka P-C koji pokazuje identičan trend, samo povišene vrijednosti. Razlog povišenih vrijednosti REE mogu biti i minerali glina, koji su zastupljeniji u uzorku P-C, a poznato je da gline na sebe vežu elemente rijetkih zemalja.

REE dijagram močvarnih nodula i eksperimentalno prženih nodula prema Anders and Grevesse (1989)

Slika 3. Dijagram rijetkih zemalja za uzorke močvarno željeznoih nodula s dodatnim prženim uzorkom nodula

Uzorci fragmenata močvarne željezne rude pokazuju najveću raznolikost u udjelima elemenata rijetkih zemalja. Uzorci sa istog lokaliteta generalno pokazuju identičan trend krivulje, kao i koncentracije elemenata rijetkih zemalja, što se može vidjeti na tri uzorka sa lokaliteta Virje – Volarski Breg (plavo označeno). Uzorci sa lokaliteta Novigrad Podravski – Milakov Berek jasno pokazuju znatnu razliku u udjelima pojedinih elemenata. Dio o europijevoj anomaliji je već ranije objašnjen. Na dijagramu sa **Slike 4.** može se još vidjeti kako dva uzorka laboratorijski pržene rude pokazuju razlike, posebno kod europija. To se može prepisati i transformaciji kalcita pri visokim temperaturama gdje dolazi do njegove prekristalizacije u smjesu kalcijevog oksida (portlandit), čime se mijenja i udio kalcija (europija) u strukturi.

REE dijagram močvarnih fragmenata i eksperimentalno prženih fragmenata prema Anders and Grevesse (1989)

Slika 4. Dijagram rijetkih zemalja za uzorke močvarno željeznih fragmenata s dodatnim prženim uzorcima

U **Tablici 6.** prikazan je sastav arheoloških uzoraka za koje se pretpostavlja da predstavljaju prženu željeznu rudu sa područja Podravine. Tipično, uzorci pržene rude sadrže željezovite minerale poput hematita i/ili magnetita. Ponekad se može pojaviti i maghemit, kao prijelazan oblik između hematita i magnetita. S obzirom da su se ovakvi arheološki uzorci dugo vremena

nalazi u tlu, dobar dio njih je počeo i korodirati, što objašnjava i povremenu pojavu goethita. Kvarc je prisutan u različitim količinama, od minerala u tragovima u nekim uzorcima, do glavne mineralne komponente u drugima. Grupa plagioklasa je također prepoznata u tragovima u uzorcima sa lokaliteta Hlebine – Velike Hlebine i Virje – Sušine.

Tablica 6. Mineralni sastav pržene željezne rude sa različitih lokaliteta u Podravini. Kratice minerala: Qtz - kvarc; Gt - goethit, Lpc - lepidokrokit; Hem – hematit; Mag – magnetit; Mgh – maghemit; Pl - plagioklas.

Uzorak	Lokalitet	Qtz	Gt	Lpc	Hem	Mag	Mgh	Pl
SJ 27 U 71		+			+++			
SJ 10 U 26	Hlebine -	+			+++		+	
SJ 16 U 45	Dedanovice	++			+++		++	
SJ 8 U 11		+			+++		++	
SJ 83 N 242		++	++			++		
SJ 89/90	Hlebine - Velike Hlebine	++	+	+	+	++		+
SJ 102 N 223	meome	+	++	+	+	++		?
SJ 320 N 315		+++			+			
SJ 001 N 545		+++			+			+
SJ 436 N 631	Virje - Sušine	+++			+			+
SJ 314 N 295/37		+++			++		+	
SJ 217 N 295/38		+	++	+		++	+	?
SJ 199 U 72	Koprivnički Ivanec	+++			+			+

+ - relativni sadržaj minerala unutar močvarne željezne rude korištenjem XRD-a (nikakva kvantitivna vrijednost nije pridružena +); +++ glavna komponenta, ++ sporedna komponenta; + komponenta u tragovima

Slično kao i u uzorcima močvarne željezne rude, i u prženoj rudi SiO₂ i Fe₂O₃ čine glavne konstituente uzoraka (**Tablica 7.**). Udio SiO₂ kreće se od 4,17 do 62,67 (χ = 27.49 mas. %),

dok se udjeli željeza kreću od 8,44 do 84,94 (($\chi = 52.29$) mas. %. Sadržaji Al₂O₃ (0,59-15,27, $\chi = 6,38$ mas. %) i MnO (0,02-5,49, $\chi = 1,57$ mas. %) pokazuju nešto značajnije udjele, dok su TiO₂ ($\chi = 0,43$ mas. %), MgO ($\chi = 0,40$ mas. %), CaO ($\chi = 0,65$ mas. %), K₂O ($\chi = 1,03$ mas. %), Na₂O ($\chi = 0,34$ mas. %), BaO ($\chi = 0,09$ mas. %) and SrO ($\chi = 0,02$ mas. %) zastupljeni u tragovima. Udio mase koja se gubi žarenjem je niži nego kod močvarne rude i kreće se između 2,39 i 11,60 mas. % ($\chi = 5,99$ mas. %). TIC i TOC pokazuju niže vrijednosti nego kod močvarne rude. TIC se kreće u rasponu od 0,02 do 0,16 ($\chi = 0,08$ mas. %), a TOC se kreće u rasponu od 0,12 i 1,3 ($\chi = 0,36$ mas. %). Linearna korelacija je vidljiva i u uzorcima pržene željezne rude, gdje faktor korelacija iznosi -0,99, odnosno jasno je vidljiva obrnuto proporcionalna korelacija u uzorcima, što se jasno vidi i na **Slici 5**.

Slika 5. Korelacija željeza i silicija u uzorcima pržene željezne rude sa područja Podravine

Slično kao i kod uzoraka močvarne željezne rude, i kod uzoraka pržene željezne rude određeni su udjeli glavnih, sporednih te elemenata u tragovima. Njihovi udjeli u uzorcima prikazani su u **Tablici 8**.

 Tablica 7. Geokemijski sastav uzoraka pržene željezne rude.

Uzorak	Lokalitet	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	MnO	CaO	K ₂ O	Na ₂ O	P ₂ O ₅	BaO	SrO	LOI	TIC	TOC	Ukupno
SJ 27 U 71		4,17	0,01	0,59	84,94	0,11	0,33	0,63	0,09	0,01	0,38	0,01	<0,01	3,19	0,13	0,13	94,46
SJ 10 U 26	Hlebine -	5,64	0,02	1,20	84,97	0,10	0,37	0,33	0,18	0,01	0,36	0,01	<0,01	2,83	0,15	0,12	96,02
SJ 16 U 45	Dedanovice	6,75	0,02	1,28	83,17	0,13	0,77	0,43	0,22	0,09	0,69	0,05	<0,01	4,55	0,16	0,12	98,15
SJ 8 U 11		5,63	0,03	1,15	82,93	0,15	0,63	0,49	0,18	0,01	0,44	0,02	<0,01	3,13	0,03	0,3	94,79
SJ 83 N 242	Hlabina	16,74	0,13	3,08	73,20	0,26	0,06	0,47	0,58	0,29	0,65	0,01	<0,01	2,39	*	*	97,86
SJ 89/90	Velike	23,08	0,25	4,44	61,56	0,39	0,10	0,53	0,76	0,41	0,40	0,02	<0,01	6,98	*	*	98,92
SJ 102 N 223	Hlebine	6,54	0,03	1,19	76,16	0,08	0,02	0,30	0,23	0,11	0,44	<0,01	<0,01	11,60	0,06	1,3	96,70
SJ 320 N 315		49,18	0,91	11,65	20,78	0,50	3,87	0,84	1,79	0,44	2,48	0,17	0,02	7,99	*	*	100,62
SJ 001 N 545		46,87	0,88	9,86	21,51	0,33	5,49	0,35	1,38	0,34	1,59	0,42	0,01	6,51	<0,02	0,22	95,54
SJ 436 N 631	Virje - Sušine	62,67	0,89	14,62	8,44	1,25	0,15	1,13	2,29	1,25	1,74	0,07	0,02	5,70	0,03	0,3	100,22
SJ 314 N 295/37	Susine	49,36	0,92	11,29	19,65	0,74	4,80	1,37	2,09	0,46	2,68	0,15	0,02	6,82	0,08	0,49	100,35
SJ 314 N 295/38		29,88	0,45	7,28	45,57	0,45	0,36	0,87	1,10	0,34	0,91	0,04	<0,01	9,79	*	*	97,04
SJ 199 U 72	Koprivnički Ivanec	50,85	1,05	15,27	16,92	0,76	3,42	0,66	2,50	0,62	2,33	0,10	0,01	6,36	<0,02	0,28	100,85

* - premala veličina uzorka da bi bilo dostatno za sve analize

Tablica 8. Udio glavnih, sporednih i elemenata u tragovima za uzorke pržene željezne rude.

Ter. o	znaka	SJ 83 N 242	SJ 89/90	SJ 102 N 223	SJ 320 N 315	SJ 001 N 545	SJ 436 N 631	SJ 199 U 72	SJ 27 U 71	SJ 10 U 26	SJ 16 U 45	SJ 8 U 11	SJ 314 N 295/37	SJ 217 N 295/38
Ag	ppm	0.06	0.07	0.03	0.11	0.15	0.13	0.11	0.02	0.03	0.05	0.03	0.13	0.16
Al	%	1.78	2.43	0.81	5.9	5.08	7.61	7.73	0.39	0.8	0.89	0.73	5.79	3.99
As	ppm	3890.2	622.9	4225.9	35.9	40.3	18	31.2	915.8	588.6	503.5	333	37.5	548.5
Ba	ppm	121	167	63	1507	3721	626	913	98	114	419	157	1337	332
Be	ppm	0.64	0.87	0.3	4.84	7.13	2.51	3.9	0.35	0.46	0.52	0.46	3.88	1.39
Bi	ppm	0.05	0.07	0.03	0.27	0.29	0.29	0.28	0.05	0.09	0.08	0.08	0.23	0.17
Ca	%	0.35	0.41	0.22	0.62	0.27	0.85	0.49	0.44	0.25	0.32	0.36	0.98	0.66
Cd	ppm	0.08	0.11	0.08	2.37	1.88	0.39	0.94	0.23	0.29	0.77	0.53	2.62	0.21
Ce	ppm	20.69	28.63	8.99	124.82	162.87	73.36	122.98	12.05	15.32	15.04	14.01	116.42	38.82
Co	ppm	30.3	18.8	93.8	78.2	89.2	16.3	119.9	26.3	22.6	17.5	19.1	82.9	16.1
Cr	ppm	177	254	58	241	408	260	249	22	59	42	53	161	125
Cs	ppm	1.16	1.63	0.51	4.67	3.68	5.19	4.93	0.37	0.68	0.92	0.69	3.39	2.98
Cu	ppm	39.7	34.3	106.5	24.3	24.6	25.2	19	7.1	7	16.1	10.7	21.4	29.7
Fe	%	>50	43.03	>50	14.39	15.44	5.95	11.8	>50	>50	>50	>50	13.59	32.47
Ga	ppm	6.1	6.77	5.55	15.8	15.27	16.83	18.03	1.38	2.11	2.18	1.89	15.11	9.17
Ge	ppm	0.67	0.11	0.78	< 0.05	0.07	< 0.05	0.05	0.43	0.4	0.29	0.3	< 0.05	0.07
Hf	ppm	0.4	0.5	0.2	0.5	0.6	0.5	0.7	0.1	0.2	0.2	0.2	0.4	1.2
In	ppm	0.015	0.02	0.007	0.062	0.064	0.068	0.072	0.007	0.012	0.011	0.009	0.056	0.031
K	%	0.48	0.64	0.2	1.45	1.15	1.89	2	0.09	0.17	0.19	0.17	1.72	0.95
La	ppm	10.4	14.3	4.6	71.3	72.5	36.5	42.8	5.9	7.2	7.6	7.2	68.5	19.8
Li	ppm	6.6	8.3	4.4	20	24.2	27	33.1	1.3	2.4	3.3	2.5	41.9	11.7
Mg	%	0.2	0.28	0.11	0.29	0.21	0.79	0.46	0.13	0.13	0.15	0.16	0.43	0.29
Mn	ppm	407	717	119	29441	42615	1145	26167	2890	3243	7166	5677	36554	2795
Mo	ppm	33.57	13.27	75.66	13.05	6.39	2.34	7.67	22.5	17.78	20.39	13.52	4.03	14.45
Na	%	0.3	0.4	< 0.2	< 0.2	<0.2	1	0.6	< 0.2	< 0.2	<0.2	< 0.2	0.5	0.4
Nb	ppm	3.4	5.1	1.5	10.1	9.8	8.5	12.2	0.7	1.3	1.2	1.2	10.4	7.2
Ni	ppm	410.9	874.2	231.4	973.9	1232.6	360.3	678.4	36.2	209.2	150	198.5	220	174.7
Р	ppm	3093	2011	2109	>10000	7945	8638	>10000	1756	1807	3308	2190	>10000	4470
Pb	ppm	5.3	7.2	2.2	38.6	50.7	22	35.2	4.4	3.6	4.4	3.6	44.1	70.2
Rb	ppm	25.8	35.1	11.1	97.2	78.7	100.7	94.9	5.7	11	15.5	11.6	73.2	49.8
Re	ppm	0.004	0.003	0.005	0.002	0.003	<0.002	0.002	0.003	0.003	0.003	0.003	0.004	0.003
S	%	0.12	0.1	0.09	0.02	0.02	<0.01	0.02	0.01	0.01	0.01	0.01	0.04	0.06
Sb	ppm	2.5	1.4	4.8	1./	1./	0.7	1.2	1.2	1	1.5	1.3	1.2	2
Sc	ppm	3.2	4.2	1.6	10.7	9.6	14.1	13.5	2	2.6	2.3	2.1	11.5	1.2
Se	ppm	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sn	ppm	1	1.2	1.4	2.4	2.1	2	3.1	0.2	0.4	0.4	0.4	2.5	1./
Sr	ppm	35.3	46.7	16.9	122.8	105.6	155.5	101.1	28.1	19.9	33.5	24.9	120.0	01.1
	ppm	0.5	0.42	0.14	0.82	0.87	0.70	1.01	0.08	0.13	0.13	0.11	0.84	0.50
	ppm	< 0.05	< 0.05	< 0.05	0.08	0.25	< 0.05	0.17	< 0.05	0.09	0.09	0.15	0.27	< 0.05
	ppin o/	2.7	3.0	1.3	10.5	12.0	10.8	14.0		1.9	1.9	1.0	10.7	5.8 0.22
	% 	0.1	0.10	0.04	0.55	0.55	0.58	0.41	0.02	0.04	0.04	0.03	0.54	0.25
	ppin	0.1	1	0.03	2.1	1.13 5 A	0.33	1.55	0.09	0.12	0.23	0.13	0.49	0.23
	ppin	0.7	1	0.4	3.1 161	J.4 190	1.3	4.0	41	54	1.4	0./ 64	124	2.1 76
	ppin	40	42	20	101	109	101	144	41	0.0	0.5	04	124	/0
	ppin	1.3	0.2	2.0	500	2.3 50.7	10.7	2.1	0.0	0.0		0.7	55.0	1.3
1 7n	ppin	3.0 24	0.3	2.9 12	20.9	220	19.7	20.2	7.7	0.3	/.4 27	0 //1	250	14.0
ZII 7.	ppin	24 12.7	40 10 1	12 0 <i>c</i>	520 15	239	149	250	7 1	²¹ 10.2	0	+1 77	10 4	4/
Ζľ	ppm	15./	10.1	0.0	15	20.2	1/	20.7	/.1	10.5	õ	1.1	12.4	40.8

Uzorcima pržene željezne rude određen je udio elemenata rijetkih zemalja kako bi se ti uzorci mogli usporediti s uzorcima močvarne željezne rude sa istog (ili približno istog) područja, te kako bi se pokušala napraviti korelacija između uzoraka. U Tablici 9. prikazan su udjeli elemenata rijetkih zemalja za prženu željeznu rudu sa područja Podravine, dok su dijagrami rijetkih zemalja za iste uzorke prikazani na Slici 6. Na istom dijagramu prikazani su i eksperimentalno prženi uzorci kako bi se vidjela njihova sličnost sa uzorcima pržene rude. Vidi se jako izražena korelacija između eksperimentalno prženih uzoraka močvarne rude i arheoloških uzoraka pržene željezne rude.

REE dijagram pržene rude i eksperimentalno pržene rude

Slika 6. Dijagram elemenata rijetkih zemalja za prženu željeznu rudu i eksperimentalno pržene uzorke sa područja Podravine

Tablica 9. Ud	jeli elemenata ri	jetkih zemalj	a u uzorcima	pržene žel	jezne rude sa	područja Podravine.

Uzorak	Lokalitet	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	∑LREE	∑HREE	∑REE	L/H REE
SJ 27 U 71		6.3	12.4	1.31	5.5	1.09	0.26	1.21	0.18	1.09	0.24	0.72	0.12	0.71	0.12	26.86	4.39	31.25	6.12
SJ 10 U 26	Hlebine -	7.2	15.3	1.58	6.7	1.32	0.31	1.36	0.21	1.3	0.27	0.8	0.12	0.75	0.13	32.41	4.94	37.35	6.56
SJ 16 U 45	Dedanovice	7.9	14.5	1.69	6.8	1.43	0.34	1.33	0.2	1.19	0.24	0.73	0.14	0.7	0.13	32.66	4.66	37.32	7.01
SJ 8 U 11		7.5	13.7	1.63	6.7	1.37	0.33	1.36	0.2	1.32	0.26	0.79	0.14	0.8	0.13	31.23	5	36.23	6.25
SJ 83 N 242	Hlebine -	10.8	21.1	2.42	9.4	1.79	0.39	1.58	0.24	1.45	0.29	0.82	0.12	0.78	0.14	45.9	5.42	51.32	8.47
SJ 102 N 223	Hlebine	4.8	8.7	1.05	4.1	0.79	0.19	0.68	0.12	0.63	0.12	0.36	0.05	0.35	0.05	19.63	2.36	21.99	8.32
SJ 320 N 315		68.1	114.5	12.47	47.8	9.02	2.09	9.78	1.52	8.79	1.84	5.26	0.74	4.12	0.67	253.98	32.72	286.7	7.76
SJ 001 N 545		75.4	160.5	17.68	66.9	14	3.37	13.04	2.12	12.15	2.3	6.65	0.96	5.81	0.89	337.85	43.92	381.77	7.69
SJ 436 N 631	Virje - Sušine	36.8	73	8.23	31.9	6.24	1.41	5.82	0.94	5.38	1.06	3.16	0.48	2.98	0.48	157.58	20.3	177.88	7.76
SJ 314 N 295/37	Susine	64.7	104	9.99	38.2	7.21	1.61	7.69	1.12	6.61	1.44	4.14	0.56	3.21	0.5	225.71	25.27	250.98	8.93
SJ 314 N 295/38		20.3	38.8	4.46	17.4	3.34	0.72	3.1	0.5	3	0.65	1.94	0.3	1.83	0.3	85.02	11.62	96.64	7.32
SJ 199 U 72	Koprivnički Ivanec	42.5	115.6	9.46	36	7.21	1.45	6.65	1.03	5.97	1.22	3.61	0.55	3.44	0.53	212.22	23	235.22	9.23

Arheološki uzorci željezne zgure detaljno su pregledani te je u trenutnom periodu 26 uzoraka usitnjeno i na njima je određen mineralni sastav. Rezultati mineralnog sastava vidljivi su u **Tablici 10**. Može se primjetiti da su glavne mineralne faze većine uzoraka fayalit (Fe-silikat), koji nastaje u reakciji između goethita/hematita i silikatne faze (kvarc) na temperaturama iznad 1200 °C, što potvrđuje prve arheološke pretpostavke da je riječ o zguri. Uz uzorke zgure, nalazi se i jedan uzorak za koji se smatra da je arheološka ruda, prikupljena kao i zgura sa istog lokaliteta. Riječ je o uzorku laboratorijskog broja 7656 koji sadrži goethit, kvarc, te plagioklase i minerale glina. Ovaj uzorak koristiti će se za korelaciju između rude i zgure. Svi uzorci navedeni u **Tablici 10.** poslani su u Kanadu na detaljne geokemijske analize.

Tablica 10. Min	eralni sastav	uzoraka arh	eološke zgu	re sa lokaliteta	Hlebine -	Velike	Hlebine.	Kratice
minerala: Fay –	fayalit; Qtz –	kvarc; Gt –	goethit; Her	n – hematit; M	lag – magi	netit.		

Lab. broj	Lokalitet	Arh. oznaka	Fay	Qtz	Gt	Hem	Mag	Wue	Ostali minerali
7633-1	HVH	U1	+++					+	Spinel
7633-2	HVH	U2	+++	+			?		Rutil
7634	HVH	U4	+++				+		
7635	HVH	U5	+++	+				+	
7636	HVH	U9	+++	+					
7637	HVH	U7b							
7638	HVH	U15							
7639	HVH	U16	+++	+			+		
7640	HVH	U14	+++	++		+	+	?	
7641	HVH	U8							
7642	HVH	U22	+++	+	+			?	
7643	HVH	U7b	+++					+	Hercinit
7644	HVH	U10	+++	+					Plagioklas
7645	HVH	U25	++					+++	
7646	HVH	U13	+++	++	+		++	+	Rutil
7647	HVH	U12	+++	++		?	+	+	Rutil
7648	HVH	U11	+++						
7649	HVH	U27	+++	+					
7650	HVH	U39	+++	++				++	

1	r an	ISFE	R				h	ka zaklada za znanost
7651	HVH	U51	+++					
7652	HVH	U32	+++	+		++	+	
7653	HVH	U48	+++					
7654	HVH	U54						
7655	HVH	U53	+++				+	Spinel
7656	HVH	U36		++	+++			Plagioklas, 10Ä
7657	HVH	U56	?	+++	+	++		Plagioklas, 10Ä
7658	HVH	U55						
7659	HVH	U47	+++	+				
7660	HVH	U46	+++	++	?			Plagioklas
7661	HVH	U49	+++					
7662-1	HVH	U37						
7662-2	HVH	U38						

Na dva uzorka zgure napravljene su detaljne analize mikromorfologije i geokemijskog sastava korištenjem SEM-EDS analize. U **Tablici 11** može se primjetiti da u prvom uzorku zgure prevladava udio željeza (bijeli dijelovi), za koje se pretpostavlja da je riječ o mineralu wuestitu (FeO) (**Slika 7**). Svi dijelovi pokazuju nešto niže udjele željeza (ali opet povišene), te se za te dijelove uzorka pretpostavlja da predstavlja željezoviti dio matriksa u obliku minerala fayalita, kemijske formule (Fe,Mg)₂[SiO₄]. Može se pretpostaviti da takav matriks pokazuje nepotpuno reducirani dio željezne rude, unutar kojeg je uklopljen visok udio željeza. Najtamniji dijelovi na slici predstavljaju preostali dio matriksa zgure. Ovaj dio ima najniže udjele željeza, te je isto tako najobogaćeniji sa preostalim kemijskim fazama (poput Si, Al, Ca, Na i K).

200µm

Slika 7. SEM-EDS prikaz područja istraživanja 1 zgure sa lokaliteta Hlebine - Velike Hlebine

Tablica 11. Geokemijski sastav u području istraživanja 1 zgure sa lokaliteta Hlebine - Velike Hlebine. Udjeli izraženi u mas. %.

Element	0	Na	Mg	Al	Si	Р	S	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	26,83			0,28						0,41	0,59	71,89	100,00
Spectrum 2	36,12		0,83		12,25				0,44		1,23	49,14	100,00
Spectrum 3	47,57	1,27		10,03	15,61	0,99	0,33	4,80	6,34			13,05	100,00
Spectrum 4	44,33	0,91		10,21	14,52	0,83	0,25	3,59	7,17	0,27		17,93	100,00

Slično možemo uočiti i u drugom dijelu uzorke gdje se ponovno vide tri osnovna dijela zgure, gotovo čisto željezoviti (bijeli dio), nepotpuno reducirani (sivi dio) i dio gdje je redukcija željeza bila najuspješnija (dijelovi sa najnižim udjelima željeza) (**Slika 8; Tablica 12**).

400µm

Slika 8. SEM-EDS prikaz područje istraživanja 2 zgure sa lokaliteta Hlebine - Velike Hlebine

Element	0	Na	Mg	Al	Si	Р	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	35,57		0,65		12,39			0,45		1,45	49,49	100,00
Spectrum 2	26,95			0,43					0,35		72,27	100,00
Spectrum 3	45,37	0,99		10,57	14,64	0,97	3,83	6,89			16,76	100,00
Spectrum 4	26,88			0,33					0,32		72,47	100,00
Spectrum 5	38,33	1,01		4,61	13,3	0,56	1,81	3,41		0,66	36,31	100,00

Tablica 12. Geokemijski sastav područje istraživanja 2 zgure sa lokaliteta Hlebine - Velike Hlebine. Udjeli izraženi u mas. %.

Na području istraživanja 3 napravljena su dva različita tipa analiza; točkasta analiza na četiri dijela tog područja uzorka (**Slika 9**) i geokemijsko mapiranje cijele površine tog dijela uzorka kako bi se uočila distribucija elemenata. U **Tablici 13** vidi se slična raspodjela željeza i ostalih elemenata kao i kod prethodna dva područja istraživanja, sa najvećim udjelom Fe u bijelom području, a najnižim u području tamnosivog matriksa. Geokemijsko mapiranje cijelog segmenta uzorka (Sum Spectrum u **Tablici 13**) očekivano potvrđuje dominantnu zastupljenost željezovite faze, uz izmjenjivanje sa alumosilikatnom fazom. Ta distribucija elemenata se lijepo vidi i na **Slici 10**.

100µm

Slika 9. SEM-EDS prikaz područja istraživanja 3 zgure sa lokaliteta Hlebine - Velike Hlebine

Slika 10. Mapa područja za područje istraživanja 4 sa prikazom distribucije elemenata

Tablica 13. Geokemijski sastav točkastih analiza područja istraživanja 3, te geokemijskog mapiranja površine zgure sa lokaliteta Hlebine - Velike Hlebine. Udjeli izraženi u mas. %.

Element	0	Na	Al	Si	Р	S	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	26,20		0,41	0,25					0,42		72,71	100,00
Spectrum 2	37,06		0,71	12,58			0,42	2,06		1,03	46,14	100,00
Spectrum 3	36,2	0,39	1,13	12,20			0,40	1,58		1,38	46,71	100,00
Spectrum 4	45,24	1,69	11,29	16,36	1,09	0,21	5,55	7,32			11,26	100,00
Sum Spectrum	36,01	0,99	6,11	10,20	0,46		1,99	2,90	0,20	0,53	40,62	100,00

U području istraživanja 4 može se vidjeti malo drugačiji raspored pojedinih faza. Fayalitna (svjetlosiva) faza je često izdužena, što možda upućuje i na kretanje i tečenje zgure prilikom taljenja. Vrlo često se može vidjeti da je wuestitna (bijela) faza okružena fayalitnom fazom, dok preostali materijal čini ispunu oko te dvije faze (**Slika 11**). U **Tablici 14** dan je geokemijski sastav za četiri točkaste analize promatrane na ovom dijelu uzorka.

60µm

Slika 11. SEM-EDS prikaz područja istraživanja 4 zgure sa lokaliteta Hlebine - Velike Hlebine

Element	0	Na	Al	Si	Р	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	26,36		0,34					0,33		72,97	100,00
Spectrum 2	36,91		1,58	11,75		0,58	2,21		1,03	45,94	100,00
Spectrum 3	44,17	2,09	11,64	16,47	0,92	5,28	6,63	0,38	0,33	12,10	100,00
Spectrum 4	36,91		1,66	12,96		0,52	1,96		0,89	45,09	100,00

Tablica 14. Geokemijski sastav zgure u području istraživanja 4.

Na **Slici 12** vidi se uvećan jedan segment sa područja istraživanja 4. U sitnom matriksu se može uočiti formiranje igličastih kristalića fayalita i wuestita, sa varijabilnim, i ponekad veoma niskim udjelima željeza (**Tablica 15**).

20µm

Slika 12. Uvećani segment sa područja istraživanja 4 i prikaz kristalinićnog matriksa

Element	0	Na	Al	Si	Р	S	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	43,43	1,18	11,28	14,83	0,87		3,66	7,15	0,29		17,33	100,00
Spectrum 2	43,64	1,23	11,16	13,43	0,78		2,72	7,37	0,53		19,14	100,00
Spectrum 3	44,20	1,21	11,24	15,29	0,88	0,23	4,52	6,73	0,27		15,42	100,00
Spectrum 4	36,05		0,39	12,33			0,21	1,56		1,09	48,38	100,00

Tablica 15. Geokemijski sastav uvećanog segmenta sa područja istraživanja 4.

U području istraživanja 5 vidi se kapljevita raspodjela wuestitne faze, koju okružuje fayalitna faza, a obje faze se potom nalaze u alumosilikatnom matriksu (**Slika 13**). Vidljiva je jasna razlika u udjelu željeza između bijele, sive i tamnosive faze (**Tablica 16**).

40µm

Slika 13. Kapljevita raspodjela wuestitne i okružujuće fayalitne faze u području istraživanja 5

Element	0	Na	Al	Si	Р	S	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	26,46								0,38	0,46	72,7	100,00
Spectrum 2	36,91		2,07	12,42	0,40		0,69	2,87		0,96	43,66	100,00
Spectrum 3	44,57	2,10	10,35	17,61	1,17	0,27	5,84	7,01			11,08	100,00
Spectrum 4	36,33		9,66	8,16				1,19	0,37	0,80	43,49	100,00

Tablica 16. Geokemijski sastav u području istraživanja 5.

Spectrum 5	26,21				0,41		73,38	100,00
Spectrum 6	25,86				0,30	0,39	73,45	100,00
Spectrum 7	26,06				0,29		73,65	100,00
Spectrum 8	26,12				0,40		73,48	100,00

U području istraživanja 6 vidi se izražena distribucija pojedinih željezovitih faza u obliku kapljica. Za ovo područje uzorka napravljena je analize cjelokupnog vidnog polja (**Slika 14**), te se vidi da ponovno prevladava željezovita faza, uz nešto sniženi udio alumosilikatne faze (**Tablica 17**).

500µm

Slika 14. SEM-EDS prikaz za Područje istraživanja 6

Tablica 17. Geokemijski sastav područja uzorka Područje istraživanja 6.

Element	0	Na	Mg	Al	Si	Р	K	Ca	Mn	Fe	Total
Spectrum 1	34,85	0,48	0,38	3,45	10,03	0,30	0,90	1,55	0,76	47,30	100,00

I u području istraživanja 7 vidi se diferencijacija u tri različite faze; wusetitnu (bijela), fayalitnu (siva) i alumosilikatni matriks (tamnosiva faza) (**Slika 15; Tablica 18**).

Slika 15. SEM-EDS analiza na području istraživanja 7

Element	0	Na	Mg	Al	Si	Р	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	25,92			0,28	0,24				0,36	0,41	72,80	100,00
Spectrum 2	25,72			0,32	0,24				0,53		73,19	100,00
Spectrum 3	25,51			0,30					0,36	0,48	73,35	100,00
Spectrum 4	34,74		0,55		12,53			0,55		1,39	50,24	100,00
Spectrum 5	35,40		1,37		12,54			0,45		1,34	48,90	100,00
Spectrum 6	44,19	1,75		11,99	15,90	1,19	5,52	6,87			12,60	100,00
Spectrum 7	25,62			0,31					0,40	0,38	73,29	100,00
Spectrum 8	34,80		0,52		12,33			0,66		1,19	50,50	100,00
Spectrum 9	44,47	1,36		11,93	15,75	1,06	5,20	6,62		0,29	13,31	100,00

Tablica 18. Geokemijski sastav u području istraživanja 7.

Analiziran je još jedan uzorak zgure sa istog lokaliteta. U odnosu na prvi uzorak, drugi pokazuje relativno simetrične i paralelne pojave wuestitine faze (**Slika 16**). Može se vidjeti pojava dva sustava wuestitne faze (najsvjetlije siva faza), međusobno okomite orijentacije, a sadrže najveći udio željezovite komponente. Tamnije siva faza, za koju se pretpostavlja da je fayalitna sadrži manje željezovite, a više alumosilikatne komponente (**Tablica 19**).

Slika 16. SEM-EDS fotografija područja istraživanja 1 drugog uzorka zgure sa lokaliteta Hlebine - Velike Hlebine. Uočavaju se dva, međusobno okomita seta wuestitne komponente

Element	0	Na	Mg	Al	Si	Р	S	Cl	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	34,28		1,09		11,92					0,53		1,56	50,62	100,00
Spectrum 2	25,71			0,64							0,56	0,39	72,69	100,00
Spectrum 3	42,66	1,17		8,84	14,93	0,90			3,23	7,01	0,24	0,48	20,55	100,00
Spectrum 4	34,79		1,08		11,95					0,57		1,62	50,00	100,00
Spectrum 5	48,55		0,30	10,25	10,49	1,06	0,26	0,32		1,26			27,51	100,00
Spectrum 6	26,55			7,05							0,66		65,74	100,00
Spectrum 7	25,89			0,61	0,22						0,39		72,89	100,00
Spectrum 8	26,63	0,85		3,48	4,46				1,00	0,73	0,46		62,38	100,00

Tablica 19. Rezultati SEM-EDS analiza područja istraživanja 1 za drugi uzorak zgure.

Na jednoj takvoj wuestitnoj izduženoj fazi napravljena je linijska analiza geokemijskog sastava kako bi se vidjelo dolazi li do značajnije promjene u sastavu te faze. Odabrano je 15 točkastih analiza duž pravca, što je vidljivo na **Slici 17**. EDS analiza pokazala je da ne dolazi do značajnije promjene kemijskog sastava duž tog pravca, odnosno, da je kemijski sastav wuestitne faze prilično ujednačen (**Tablica 20**).

100µm

Slika 17. Linijska EDS analiza na dijelu wuestitne faze

Tablica 20. Rezultati linijske EDS analize na dijelu uzorka koji predstavlja wuestitnu fazu.

Element	0	Al	Si	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	25.75	0.49				0.59	0.50	72.67	100.00
Spectrum 2	27.09	0.35				0.41	0.41	71.73	100.00
Spectrum 3	24.66	0.57				0.36	0.39	74.03	100.00

~		0.44				0.01	0.70		100.00
Spectrum 4	25.93	0.41				0.31	0.50	72.84	100.00
Spectrum 5	25.13	0.51				0.40	0.41	73.55	100.00
Spectrum 6	25.44	0.56	0.27			0.38	0.47	72.89	100.00
Spectrum 7	25.78	1.95	0.34			0.46	0.54	70.93	100.00
Spectrum 8	25.24	0.29	0.67			0.34	0.67	72.79	100.00
Spectrum 9	25.94	1.44	0.94			0.36	0.42	70.90	100.00
Spectrum 10	25.44	0.46	0.29			0.31	0.37	73.13	100.00
Spectrum 11	30.33	3.12	3.29	0.67	0.87	0.52		61.19	100.00
Spectrum 12	25.09	1.27	0.26			0.40	0.46	72.51	100.00
Spectrum 13	25.00	0.52	0.26			0.39	0.52	73.31	100.00
Spectrum 14	25.07	0.48	0.27			0.44		73.75	100.00
Spectrum 15	24.95	0.61	0.32			0.41	0.56	73.14	100.00

U jednom dijelu uzorka uočena je i gotovo čista željezovita faza (**Slika 18**), s udjelom željeza preko 99 mas. %. Ovakvo prepoznata faza može se karakterizirati potpunom redukcijom u ovom segmentu uzorka, odnosno transformacijom u elementarno željezo (**Tablica 21**).

Slika 18. Prikaz gotovo čiste željezovite faze u jednom dijelu uzorka zgure (središnji dio slike)

Okolo te čiste željezovite faze, ponovno su uočene redom wuestitna faza, zatim fayalitna faza, i na poslijetku alumosilikatna faza (Spectrum 5, 6 i 7 u **Tablici 21**).

Element	0	Na	Mg	Al	Si	Р	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	1,12										98,88	100,00
Spectrum 2	0,87										99,13	100,00
Spectrum 3	0,81										99,19	100,00
Spectrum 4	0,91										99,09	100,00
Spectrum 5	24,84			0,68					0,36	0,49	73,63	100,00
Spectrum 6	34,31		0,49		12,15			0,66		1,47	50,93	100,00
Spectrum 7	42,74	1,18		9,53	14,74	1,01	3,60	7,30		0,43	19,48	100,00

Tablica 21. SEM-EDS rezultati analize željezovitog uklopka i okružujućih faza.

U nekim dijelovima uzoraka, poput područja istraživanja 4 uočen je i povišeni udio fosfora (P) (**Slika 19, Tablica 22**, Spectrum 2). Tako povišen udio fosfora tipičan je i za močvarnu željeznu rudu, te može ukazivati na međusobnu povezanost močvarne željezne rude sa Podravine i uzoraka zgure.

Slika 19. Istraživani segment zgure koji je pokazao povišeni udio fosfora u jednom dijelu

Tablica 22. Rezultati SEM-EDS analize sa jednog segmenta zgure. Posebna pozornost posvetiti će se dijelu uzorka koji je pokazao povišen sadržaj fosfora zbog potencijalne povezanosti sa močvarnom željeznom rudom.

Spectrum	0	Na	Mg	Al	Si	Р	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	42,70	1,08		10,01	13,98	0,98	3,36	7,43	0,37	0,37	19,71	100,00
Spectrum 2	40,64			4,93	4,46	2,48		1,06			46,43	100,00
Spectrum 3	34,83		1,25		12,39			0,44		1,52	49,57	100,00
Spectrum 4	43,15	1,21		9,49	14,95	1,04	3,87	6,56		0,52	19,20	100,00
Spectrum 5	34,52		1,13		12,06			0,52		1,45	50,32	100,00
Spectrum 6	25,62			0,77					0,48		73,13	100,00
Spectrum 7	25,28			0,66					0,41	0,53	73,12	100,00

Diskusija vezana uz Cilj 1

Iz provedenih mineraloških analiza korištenjem rendgenske difrakcije na prahu (XRD) i skenirajuće elektronske mikroskopije s pripadajućom energetsko-disperzivnom spektroskopijom (SEM-EDS) precizno je definiran mineraloški sastav za 26 uzoraka zgure sa lokaliteta Hlebine – Velike Hlebine. Pritom je za 25 uzoraka jasno definirano da je riječ o arheološkim uzorcima zgure i jednom arheološkom uzorku željezne rude. Arheološki uzorci zgure su jasno pokazali prisutnost fayalita, Fe-silikata koji nastaje tijekom procesa taljenja željezne rude u reakciji između Fe i (alumo)silikatne faze, te varijabilni sadržaj drugih Fe minerala tipičnih za taljenu rudu, poput wuestita, hematita i magnetita. Upravo te faze prepoznate su i korištenjem SEM-EDS analize, gdje se jasno razlučuju wuestitna, fayalitna i Fe-alumosilikatna faza.

Trenutna mineraloška istraživanja močvarne željezne rude, pržene željezne rude i željezne zgure pokazuju jasnu slijednost u mineralnom sastavu. U mineralnom sastavu različitih tipova močvarne željezne rude dominiraju goethit, kao glavni predstavnik željezovitih minerala i kvarc kao glavni predstavnik silikatne faze. Uz te mineralne faze, često se javljaju i druge alumosilikatne faze, poput minerale glina i plagioklasa. Goethit je u svojoj osnovi oksihidrat željeza, što znači da u svojoj strukturi često sadrži vezanu vodu u obliku hidroksidnog iona (OH⁻). Upravo ta vezana voda bi se prilikom prženja trebala izgubiti, a oksihidrat željeza bi se trebao transformirati u oksid željeza. Takav oksid željeza ima i veći ukupni maseni sadržaj

željeza u strukturi u odnosu na oksihidrat, upravo zbog gubitka vode. Vrijednosti udjela željeza u močvarnoj željeznoj rudi kretali su se do maksimalnih 70 mas. %. U prženoj željeznoj rudi, usred zagrijavanja uzoraka na temperaturama između 450-800 °C vidi se jasna prekristalizacija goethita u niz drugih oksida željeza, od kojih su hematit i magnetit bili najčešći. Hematit je direktni produkt prženja željeza jer je riječ o mineralu koji u svojoj strukturi sadrži samo željezo (Fe) i kisik (O). Ukupni udjeli željeza pri geokemijskim analizama pokazivali su vrijednosti i preko 85 mas. %, pri čemu se vidi jasan porast ukupnog masenog udjela željeza. Uz željezovite minerale često se i dalje mogu nalaziti kvarc, kao glavni predstavnik silikatne faze. Udjeli drugih mineralnih faza bitno su smanjeni, dok se minerali glina više uopće ne primjećuju. Slijednost mineralnog sastava se dalje nastavlja i kod uzoraka željezne zgure. U mineralnom sastavu prevladavaju fayalit (Fe[SiO₄] i wuestit (FeO), kao dva najčešća predstavnika željezovitih minerala u zguri, te kvarc i plagioklas kao preostali minerali. SEM-EDS analizom uzoraka zgure vidi se jasno razlučivanje wuestitne faze, fayalitne faze i Fe-alumosilikatne faze. Pritom wuestitna faza pokazuje najveći udio željeza, što je i za očekivati s obzirom na jednostavan kemijski sastav u kojem prevladavaju Fe i O. Fayalitna faza pokazuje nešto snižene udjele željeza, što je i za očekivati s obzirom na kompleksniji kemijski sastav favalita sa višim udjelom silicija, kisika i magnezija nego što je kod wuestita. Fe-alumosilikatna faza kako joj samo ime kaže, se sastoji prvenstveno od željeza, aluminija i silicija. Većinom je takva faza i amorfne građe, pa nije neobično da se ne detektira u potpunosti na XRD-u, ali je zato prepoznata na SEM-EDS-u.

Najpreciznija korelacija između močvarne željezne rude, pržene željezne rude i željezne zgure je analizom i usporedbom geokemijskog sastava za sva tri tipa uzoraka. Pritom su vrlo bitni odnosi elemenata rijetkih zemalja, koji se često koriste u svrhe izvorišta materijala, te u korelaciji između različitih tipova željeznih uzoraka. Kako je prikazano na ranijim dijagramima rijetkih zemalja između močvarne željezne rude i pržene željezne rude vidi se jasna sličnost u kretanju dijagrama rijetkih zemalja između ta dva tipa uzoraka. I jedni i drugi imaju povišen sadržaj lakih elemenata rijetkih zemalja (LREE), a snižen udio teških elemenata rijetkih zemalja (HREE). Dijagrami stoga pokazuju pad s lijeve strane na desnu stranu, s izraženom negativnom Eu anomalijom, što je i tipično za uzorke nastale u kopnenim uvjetima.

Na temelju analiza dva uzorka zgure korištenjem SEM-EDS analize jasno se vidi razlika u mikromorfologiji same zgure. S obzirom na tako bitno različite mikromorfološke karakteristike, pretpostavlja se da je riječ o dva različita tipa zgure sa istog lokaliteta. S obzirom

na složenost geokemijskih korelacija između rude i zgure, vrlo je bitno uzeti u obzirom o kojem je tipu zgure riječ. Poznato je da prilikom taljenja i obrade željeza može nastati nekoliko različitih tipova zgura, poput tzv. curavke (zgura koja se u tekućem stanju ispušta iz peći tijekom taljenja), zgure sa dna peći (na kojoj obično pluta željezoviti bloom) koja formira skledicu ili kovačke zgure (koja nastaje prilikom obrađivanja željeznog blooma). Svi ti tipovi zgura vrlo često znaju biti makroskopski i mineraloški vrlo slične (tamnosive ili crne boje, sa metalik sjajem, umjereno visoke tvrdoće i relativno teške). Ako se uz to u obzir uzme i činjenica da je riječ o zgurama pronađenim u većem vremenskom rasponu, prilikom kojeg je možda dolazilo i do promjene u recepturi taljenja željeza, jasno je da se za preciznu geokemijsku korelaciju potrebno odabrati veći broj uzoraka od 10 predviđenih u radnom planu. Stoga je na detaljnu analizu i određivanje udjela oksida, udjela glavnih, sporednih i elemenata u tragovima poslano 25 uzoraka zgure i jedan uzorak rude sa istog lokaliteta. Ovako veliki broj uzoraka tražio je i dulji vremenski period pripreme uzoraka i početne mineraloške analize, što je u konačnici dovelo do odstupanja u dobivanju geokemijskog sastava prije kraja treće projektne godine. Međutim, s obziom da su uzorci pronađeni u vrlo sličnom arheološkom kontekstu kao i rude, može se očekivati da će i uzorci zgura pokazati da je upravo močvarna željezna ruda bila izvorišna sirovina za taljenje i proizvodnju željeza u području Podravine.

Cilj 2 Multielementna geokemijska i mineraloška analiza metalnih predmeta te korelacija sa željeznom rudom i zgurom

Kao drugi cilj treće projektne godine zadano je napraviti geokemijsku analizu željeznih predmeta te njihocu korelaciju sa prethodno analiziranim uzorcima rude i zgure. Odabrani su željezni predmeti sa lokaliteta Virje – Volarski Breg, Virje – Sušine i Hlebine – Velike Hlebine, jer je riječ o arheološki najbolje istraženim lokalitetima. Međutim, prilikom odabira prigodnih uzoraka za mineraloške i geokemijske analize došlo je do nekoliko problema. Prvenstveno, za potpune geokemijske analize u MSA Labs u Kanadi potrebno je redom: 5 grama uzorka za određivanje udjela glavnih oksida, 10 grama uzorka za izradu multielementne kemijske analize prilikom čega se određuje do 51 kemijski element, te još 5 grama uzorka kako bi se odredili udjeli elemenata rijetkih zemalja. Sve ove tri analize su prijeko potrebne za detaljnu gekemijsku karakterizaciju željeznih arheoloških predmeta. U **Tablici 23** nalazi se popis odabranih uzoraka i njihova težina.

Lokalitet	Stratigrafska jed.	Broj uzorka	Težina (g)		
Virje - Volarski Breg / Sušine	SJ 01/323	PN 230	22,4		
Virje - Volarski Breg / Sušine	SJ 319	PN 103	3,5		
Virje - Volarski Breg / Sušine	SJ 436	PN 184	13,5		
Virje - Volarski Breg / Sušine	SJ 319	PN 104	4,5		
Virje - Volarski Breg / Sušine	SJ 321	PN 69	6,3		
Virje - Volarski Breg / Sušine	SJ 288	PN 175	4,1		
Virje - Volarski Breg / Sušine	SJ 321	PN 146	4.0		
Virje - Volarski Breg / Sušine	SJ 323	PN 226	2,9		
Virje - Volarski Breg / Sušine	SJ 340	PN 227	15,1		
Virje - Volarski Breg / Sušine	SJ 436	PN 185	17,2		
Virje - Volarski Breg / Sušine	SJ 302	PN 232	15,6		
Virje - Volarski Breg / Sušine	SJ 424	PN 183	21,8		
Virje - Volarski Breg / Sušine	SJ 424	PN 181	23,8		
Virje - Volarski Breg / Sušine	SJ 424	PN 182	7,9		
Hlebine - Velike Hlebine	SJ 39	PN 2	18,0		
Hlebine - Velike Hlebine	SJ 105	N 237	9,4		
Hlebine - Velike Hlebine	SJ 5a	PN 3	5,6		
Hlebine - Velike Hlebine	SJ 105	PN 230	3,6		
Hlebine - Velike Hlebine	SJ 31	N 65	8,2		

Tablica 23. Popis uzoraka arheoloških predmeta i njihovih težina.

Vidi se da je za detaljnu geokemijsku analizu odabrano 5 od 19 uzoraka. Nadalje, osim geokemijske karakterizacije potrebna je i mineraloška karakterizacija željeznih predmeta. Kako bi se to uspjelo napraviti uzorke željeznih predmeta potrebno je usitniti u frakciju praha. S obzirom da je prilikom ranijih mineraloških istraživanja željeznih predmeta došlo do pucanja ahatnog tarionika koji se uobičajeno koristi za usitnjavanje uzoraka, odlučeno je da će se uzorci usitniti u željeznom tarioniku. Međutim, prilikom nekoliko pokušaja usitnjavanja željeznih predmeta u prah, primjećeno je da željezni predmeti imaju iznimnu čvrstoću, te je iste gotovo nemoguće usitniti na frakciju praha, odnosno, dovođe do oštećenja i željeznog tarionika. Pokušano je usitnjavanje uzoraka u suradnji sa Zavodom za rudarstvo i geotehniku koristenjem

nekoliko različitih uređaja, što se također pokazalo neuspješno. Tek je za jedan uzorak; Virje -Volarski Breg PN 270 skupljena dovoljna količina praha te je njemu određen mineralni sastav. Kao što se vidi na rendgenogramu prikazanom na **Slici 20**, u uzorku dominira čista željezovita faza (Fe), praćena pojavom magnetita i kvaca. Sporadično se pojavljuju i minerali iz skupine plagioklasa. Ovakav mineralni sastav očekuje se i u preostalim uzorcima željeznih predmeta s obzirom da vizualno vrlo sliče jedan drugom. S obzirom na poteškoće, moguće je samo jedno rješenje. Uzorci će biti poslani u svom izvornom obliku, bez prethodnog usitnjavanja u prah u MSA Labs u Kanadi, te će se tamo pokušati usitniti komercijalno dostupnom opremom za pripremu uzoraka. Takvi usitnjeni uzorci biti će podvrgnuti geokemijskim analizama, te će se po završetku istih preostali dio uzorka poslati natrag na Institut za Arheologiju (odnosno Rudarsko-geološko-naftni fakultet kao partner) gdje će se uzorcima naknadno odrediti njihov mineralni sastav.

Slika 20. Rendgenogram uzorka željeznog predmeta sa lokaliteta Virje - Volarski Breg. Mineraloške kratice: Fe – elementarno željezo, Mag – magnetit; Qtz – kvarc; Pl – grupa plagioklasa.

Ako se ipak pogleda mineraloška slijednost i arheološki kontekst u kojem su pronađeni i uzorci arheoloških željeznih predmeta, može se vidjeti promjena mineralnog sastava od tipičnih Feoksihdroksida, prema Fe-oksidima, potom Fe-silikatima i naposljetku čistog elementarnog željeza. Stoga se očekuje i geokemijska slijednost u analiziranim uzorcima sa područja Podravina.