

TransEER

University of Zagreb FACULTY OF MINING, GEOLOGY AND PETROLEUM ENGINEERING

Mineralogical and geochemical characteristics of ore for possible iron production in Podravina region, NE Croatia

Tomislav Brenko, Sibila Borojević Šoštarić, Stanko Ružičić

Faculty of Mining, Geology and Petroleum Engineering University of Zagreb, Croatia

> 7.12.2018. Zagreb, Croatia

Table of Content

- 1. Introduction
- 2. Study area
- 3. Samples and methods
- 4. Results
- 5. Conclusions

Introduction

- Defining type of iron ore, smelting and smithing processes and influence on identity and dinamics of socio-cultural relations from Late antiquity to Middle Ages
- Podravina region recognized for iron smelting and iron production – over 120 possible remains of smelting furnaces
- Archeological sites Virje–Volarski Breg, Virje–Sušine and Hlebine–Velike Hlebine
- <u>Bog iron ore as main source of iron</u> <u>ore?</u>

Study area

- Large alluvial plain dominated by meandering Drava River and its tributaries
- Several abandoned riverbeds, some of them still containing water, forming still waters and pond areas
- Two main pedological units: Fluvisols and Gleysols
- Agricultural area located between Molve and Virje

Samples and methods

- Mineral composition of samples was investigated using X-ray diffraction (XRD)
- Geochemical analysis of samples was obtained using inductively coupled plasma mass spectroscopy (ICP-MS) and atomic absorption spectroscopy (AAS)
- Additional geochemical, mineralogical and morphological data were obtained using scanning electron microscopy with adjoining energy dispersive X-ray spectroscopy (SEM-EDS)
- 3 samples representing potential bog iron ore

NP-MB 16

- found during pipeline construction at depth of 2 meters
- weighing over 2 kilograms
- visible different phases

NP-MB 17

- found at the surface during geological studies
- 10 centimeters in diameter
- visible two main phases; black and orange

NP-MB 18

- found at the surface of agricultural field
- different sizes and shapes
- again different phases
- total weight of samples over 500 grams

Results

X-ray diffraction

Table 1. Mineral composition of potential bog iron samples. (Abbreviations: Gt – goethite, Qtz – quartz, Ms – muscovite, Pl – plagioclase, Pyr – pyrolusite, Cal – calcite, AM – amorphic matter)

Sample	Gt	Qtz	Ms	Pl	Pyr	Cal	AM
NP-MB 16	+++	+++	-	+	-	++	+
NP-MB 17	+++	+++	+	+	+	-	?
NP-MB 18	++++	+	-	-	-	-	?

Results

X-ray diffraction

Results

Geochemistry

Table 1. Major elements concentration, wt. %

Location	Sample	SiO_2	TiO_2	Al_2O_3	Fe ₂ O ₃	MgO	MnO	CaO	K_2O	Na ₂ O	Cr_2O_3	SrO	BaO	P_2O_5
Novigrad Podravski -	NP-MB 16	9.05	0.1	2.25	39.06	0.63	19.17	7.21	0.36	0.2	<0,01	0.14	0.84	0.67
Milakov Berak	NP-MB 17	9.4	0.08	2.6	37.86	0.61	27.42	1.63	0.38	0.22	<0,01	0.2	1.23	0.5

Table 2. Iron concentration indifferent parts of sample NP-MB 16

Sample	Sample part	Fe, wt. %
	whole sample	40.09
NP-MB 16	dark black section	32.02
	brown section	45.71
	grayish section	28.55

TransFER

Scanning electron microscopy

NP-MB 16 Site of interest 2

	Al	Ca	Fe	Mn	0	Si	Total
wt. %	0.78	10.25	21.62	16.47	47.20	1.85	98.17

300µm

300µm

Si

NP-MB 16 Site of interest 4

	Al	Ca	Fe	Mn	0	Si	Total
wt. %	2.27	4.70	26.74	13.53	44.48	4.88	96.6

100µm

NP-MB 18 Site of interest 3

200µm

	Weight %											
Spectrum	Ca	Cl	Fe	K	Mg	Mn	Na	0	Р	Si	Total	
Spectrum 1	0.72		48.61			10.28		37.61	0.58	2.2	100	
Spectrum 2	0.86		41.65			15.52		39.94	0.33	1.69	100	
Spectrum 3	0.36		51.77			2.09		43.11	0.53	2.14	100	
Spectrum 4	1.16		36.63			22.1		37.7	0.59	1.82	100	
Spectrum 5	2.28		7.39	0.62	1.07	55.09	1.35	32.2			100	
Spectrum 6	2.39	0.36	5.6	0.83	1.03	53.68	1.37	34.33		0.41	100	
Spectrum 7	1.56		25.75	0.32	0.52	34.84		36.04		0.99	100	
Spectrum 8			55.59			1.18		41.25	0.33	1.66	100	
Spectrum 9	0.19		54.85			1.52		41.36		2.08	100	

Small scale
oscilations of
iron and
manganese –
variable
redox
conditions in
soil

TransFER

NP-MB 16

Site of interest 2

Site of interest 9

60µm

Spectrum	0	Са	Ti	Mn	Fe	Ва	Total
Spectrum 1	43.83	0.16	55.08	0.17	0.76	0	100
Spectrum 2	39.21	0.53	0	59.31	0.68	0	100
Spectrum 3	36.6	1.7	0	52.72	1.49	6.4	100
Spectrum 4	39.62	0.74	0	42.1	15.87	0.49	100

Spectrum	0	Na	Mg	Са	Mn	Fe	Ва
Spectrum 1	68.76	0	0	0.51	30.29	0.24	0
Spectrum 2	68.2	0.69	0.8	2.28	25.36	0.86	1.14
Spectrum 3	63.24	0.98	0.59	1.89	30.34	0.8	1.25
Spectrum 4	60.73	0.81	0.51	2.35	32.76	0.79	0.92
Spectrum 5	75.99	0	0.39	23.42	0.19	0	0

Conclusions

- XRD analysis show that all three samples contain **goethite** and quartz, usually with feldspars (plagioclase), pyrolusite, some phyllosilicates and various amount of amorphic matter
- Geochemical analysis shows elevated concentrations of iron (37.86–39.04 wt.%) and manganese (19.17–27.42 wt.%)
- SEM-EDS showed existance of **crystallic and amorphic, colloidal phases**, different types of manganese minerals and existance of secondary calcitization
- Small scale oscilation of Fe and Mn variable redox conditions
- Formation mechanism is **colloidal precipitation from (ground)water**
- Different concentration of Ba in different phases elevated concentration in amorphic phase two different Mn-solutions?
- Bog iron ore
- Use as iron ore high amount of iron, accesible, easy to process

Thank You for your attention!

This work has been fully supported by Croatian Science Foundation under the project TransFER (5074).