The 5th Geoarchaeological Conference

Late Antiquity and Migration Period in the light of geoarchaeological records from the eastern Mediterranean, eastern Adriatic and adjacent regions

Zagreb, 23rd–24th October 2018

Dynamics of activities related to smelting economy during Late Antiquity and early Middle Ages – case study of Virje and Hlebine

Tajana Sekelj Ivančan, Katarina Botić

Institute of Archaeology
Zagreb, Croatia
tsvancan@iarh.hr
katarina.botic@iarh.hr
Project: TransFER (2017-2021)

Proizvodnja željeza uz rijeku Dravu u antici i srednjem vijeku: stvaranje i transfer znanja, tehnologija i roba

Iron production along the Drava River in the Roman period and the Middle Ages: Creation and transfer of knowledge, technologies and goods

Leader: Phd Tajana Sekelj Ivančan, Institute of Archaeology, Zagreb, Croatia
Funded by: Croatian Scientific Fundation

In order to define the meaning of iron production in the context of ancient and medieval societies, the following tasks were set:

- To specify the source of the iron ore and the other necessary resources (clay, water, wood);
- To define the technology of processing the iron ore throughout the historical periods and the intensity of production;
- To define the impact of iron production in the context of socio-cultural relations and interaction of people and goods
Topographic map of the Drava River basin with positions of archaeological sites with recorded smelting features (slag) (made by: T. Brenko, Univ. of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Department for Minerology, Petrology and Mineral sources; Valent et al. 2017: 7)
Virje – Volarski breg and Sušine

- the site is located between villages Virje and Molve in Koprivnica-Križevci County, Croatia
- surface finds:
 1 – Late La Tène period, High Middle Ages
 2 – Early Iron Age
 3 – Late Middle Ages
 4 – Late Bronze Age, Roman period
 5 – Bronze Age
 6 – Late Middle Ages

(Tkalčec, Sekelj Ivančan 2017)
Virje – Volarski breg 2007, surface finds (photo: T. Sekelj Ivančan)

(Sekelj Ivančan 2017; Tkalčec, Sekelj Ivančan 2017; Sekelj Ivančan, Hrovatin 2017; Valent 2018)
Trench 1 - 230 m²:

5 smelting furnaces *in situ* (red)
4 dislocated remains of destroyed furnaces (brown)
5 pits with burned bottoms (blue)
1 fence and numerous postholes (violet)

(Tkalčec, Sekelj Ivančan 2017; Valent 2018)

Virje - Volarski breg 2008

(Tkalčec, Sekelj Ivančan 2017; Valent 2018)
Virje – Volarski breg 2010, settlement indicators

(Tkalčec, Sekelj Ivančan 2017)
Virje – Sušine 2012 (photo: T. Sekelj Ivančan)

(Tkalčec, Sekelj Ivančan 2017)
Trench 5 – 202 m²
over 1 tone of slag

(Valent 2018)
Pleiner 2000: Pl. IX, Romano-Barbarian slag pit furnaces in Jutland, Drengsted, Denmark

Virje – Sušine 2013

(Tkalčec, Sekelj Ivančan 2017)

(Pleiner 2000: Pl. X, slag pit furnaces in Jutland, Snorup, Denmark)

(Pleiner 2000: Fig. 67, Left, slag pit furnace)
(Sekelj Ivančan, Hrovatin 2017)
Hlebine – geophysical survey 2015

(Tkalčec, Sekelj Ivančan 2017)
(made by: K. Turkalj)

(B. Mušić, Univerza v Ljubljani, Filozofska fakulteta, Oddelek za arheologijo)
Hlebine – Dedanovice

(B. Mušič, Univerza v Ljubljani, Filozofskfa fakulteta, Oddelek za arheologijo)
Problems:

• no remains of material (such as pottery or metal finds) in furnaces or other distinctive elements that would allow dating of archaeological features
• technology of obtaining iron from iron ore remained almost unchanged from the La Tène trough Roman period to the Middle Ages
• furnace walls, slag and nozzles have unchanged form through all three periods and can’t be dated

Most of the sites can only be dated by 14C

(Tkalčec, Sekelj Ivančan 2017)
Geologic map of the Drava River basin with positions of archaeological sites with recorded smelting features (slag) (made by: T. Brenko; Valent et al. 2017: 8)
Pedological map of the Drava River basin with positions of archaeological sites with recorded smelting features (slag)
(made by: T. Brenko; Valent et al. 2017: 9)
Bacteria *Leptothrix* (better iron deposition) goethit oolithic iron ore layer (Valent et al. 2017: 11) is naturally renewed by regular flooding
Virje – analysis of the concentration of iron in the soil, 14 samples (T. Marković)

A total of iron, dissolving the soil sample in aqua regia (HNO₃:HCl):
12 samples = 0,4–5,1 (Total Fe %)

SU 173 = 19,3 (Total Fe %)
SU 197 = 23,4 (Total Fe %)

20% of Fe = iron ore source

(Sekelj Ivančan, Marković 2016; Sekelj Ivančan, Hrovatin 2017)
clayey silt

silt with occasional traces

silt with orange traces of middle intensity

silt to clay transition with clear traces

clay
First Military Survey (1782–1785)

Peteranec – Gorica

Peteranec – Ciglene

Novigrad Podravski – Milakov berek
Hlebine – Velike Hlebine
A. Deforestation during the last 2500 years; B. Reconstruction of rainfall (April-June) and temperature (June-August) in the last 2500 years. Gray vertical bands mark key events in European history (Buntgen et al. 2011: 580, Fig. 2; 581, Fig. 4; Lubick 2011: Fig. 1)
Topographic map of the Drava River basin with positions of archaeological sites with recorded smelting features (slag) (made by: T. Brenko, Univ. of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Department for Minerology, Petrology and Mineral sources; Valent et al. 2017: 7)
Position of known Roman communications and Roman sites

(Valent, Zvijerac 2017: 465, map 4)
Position of Roman communications and early medieval sites

(Valent, Zvijerac 2017: 466, map 5)
Position of early medieval sites dated from the mid 6th to the end of the 7th century.

(Valent, Zvijerac 2017: 466, map 6)
Position of early medieval sites dated from the end of the 7th to the end of the 8th century

(Valent, Zvijerac 2017: 467, map 7)
Concluding remarks

- continuity of life from late Roman period through early and late Middle Ages to Modern period in this region
- Virje site – disused short period of time while Hlebine site shows continuity in occupation
- change in occupation positions regarding available deposits of iron ore
- around AD 600 – extremely dry and cold conditions prevailed
- shortage of precipitation could certainly have affected the natural deposition of iron ore
- iron production itself could have continued at some other unexhausted positions for a short period of time (such as Hlebine)